Features of Kubeflow on GCP

Reasons to use Kubeflow on Google Cloud Platform (GCP)

Running Kubeflow on GCP brings you the following features:

  • You use Deployment Manager to declaratively manage all non-Kubernetes resources (including the GKE cluster). Deployment Manager is easy to customize for your particular use case.
  • You can take advantage of GKE autoscaling to scale your cluster horizontally and vertically to meet the demands of machine learning (ML) workloads with large resource requirements.
  • Cloud Identity-Aware Proxy (Cloud IAP) makes it easy to securely connect to Jupyter and other web apps running as part of Kubeflow.
  • Stackdriver provides persistent logs to aid in debugging and troubleshooting.
  • You can use GPUs and Cloud TPU to accelerate your workload.

Next steps


Last modified March 10, 2020: content i18n for zh (6c961064)